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Conformal Window:
NFcrit < NF <NFaf 

Viable Technicolor model (e.g. 
WTC) is expected to exist in 
vicinity of NFcrit.

First task : Identifying NFcrit
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Phase of a theory with NF degenerate massless flavors at T=0



We take Wilson fermion.
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Disadvantages:
✓O(a) scaling violation
✓Fine-tuning,
✓...

Advantages:
✓Simple, tractable and 

well understood
✓Able to study arbitrary 

NF without any subtlety
✓Independent check to KS 

(or other) results



There are several approaches to identify NFcrit.
Focusing on SU(3) gauge theory, we are performing the 
following studies:

1. Running coupling and anomalous dimension in 
10-flavor QCD. IRFP?

2. Finite temperature study of Many Flavor QCD 
(NF = 6 - 10)
• Strategy
• Future prospect

Contents



α(μ) and γm in
10-flavor QCD
M. Hayakawa,  K.-I. Ishikawa, Y. Osaki,

S. Takeda, S. Uno, NY



DBF=0 ⇒ IRFP
g2FP ≥ 12
Continuum extrapolation 
with two data points.
In order to have more 
confidence, large V 
calculation is on-going.

gSF2(μ) in 10-flavor QCD
Hayakawa, Ishikawa, Osaki, Takeda, Uno, NY, PRD(2011) and work in progress

Preliminary

0 0.2 0.4 0.6 0.8
1/u

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

D
BF

3-loop SF s=2

Determination of the running coupling in Nf =6 two-color QCD with Plaquette gauge and Wilson quark actions · · · March 9, 2012

2.1 Discrete Beta function

I introduce the discrete β function (DBF) [9]

Blat(u(g2
0), l1, l2) =

1

g2(g2
0, l2)

−
1

g2(g2
0, l1)

, (9)

u = g2(g2
0, l1), (10)

s =
l2
l1

. (11)

Here I slightly modified the original DBF by an overall constant and the definition of argument. The contin-
uum counterpart is given by

BSF(u, s) =
1

g2
SF(u, s)

−
1

u
. (12)

At the leading order of continuum perturbation theory, the DBF is scheme-independent and given by

Bleading(u, s) = −b1 ln(s) =







−0.012145120 for s = 4/3
−0.017117585 for s = 3/2
−0.029262705 for s = 2

, (13)

independent of u, where Nc = 2 and Nf = 6 and g−2
SF (L) = b1 ln(L0/L) is used. If one goes to the next-

leading order, the u dependence comes in. One can include the higher order effects numerically. Using the
DBF defined in eq. (11), one can write

1

g2(u, s)
=

1 + u B(u, s)

u
, (14)

where the notation is simplified. Using the numerical values of p1 given in eq.(2), the lattice DBF values in
the small u limit can be calculated as

Blat(u, l1, l2) = p1(l1) − p1(l2)) =











































































−0.0084127199 for (l1, l2) = (6, 8)
−0.0070582401 for (l1, l2) = (12, 16)
−0.0076604041 for (l1, l2) = (18, 24)

−0.0100876671 for (l1, l2) = (8, 12)
−0.0100474271 for (l1, l2) = (12, 18)
−0.0106495911 for (l1, l2) = (16, 24)

−0.0185003871 for (l1, l2) = (6, 12)
−0.0171459072 for (l1, l2) = (8, 16)
−0.0177078312 for (l1, l2) = (12, 24)

. (15)

That was numerically checked.
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Adding large V data, the 
continuum limit shits 
upward.
g2FP ≥ 12 ⇒ g2FP ～	  10

⬇

More confident on IRFP

Preliminary
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@g2SF = 10



Two different step scaling 
factors give consistent 
result.

Assuming gFP2 ~10, γm~1 !

10-flavor QCD appears 
to be in CW (NFcrit <10) 
and have γm  ~ O(1).

Preliminary

γm of 10-flavor QCD
Hayakawa, Ishikawa, Osaki, Takeda, Uno, N.Y., work in progress
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Finite temperature study 
of Many Flavor QCD

WMF Collaboration: M. Hayakawa,  K.-I. Ishikawa, Y. Iwasaki,
S. Takeda, T. Yoshie, NY
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Phase diagram of  Wilson fermion
for NF < NFcrit  Iwasaki et al. (91,04)

19

If the theory is confining, 
the transition line move to 
the right as T decreases (or 
V increases).

infinitely heavy quarks. Quarks are confined for any value of
the current quark mass for all values of ! at zero temperature
(Nt!").
On a lattice with a fixed finite Nt , we have the finite

temperature deconfining transition at finite ! , because the
temperature T!1/Nta becomes larger as ! increases in as-
ymptotically free theories. At K!0 (mq!"), the first order
finite temperature phase transition of pure SU#3$ gauge
theory locates at !c!5.69254(24) and 5.89405#51$ for Nt
!4 and 6 %18& and at !c!6.0625 for Nt!8 %19&. This finite
temperature transition turns into a crossover transition at in-
termediate values of K, and becomes stronger again towards
the chiral limit Kc . As K is increased, the finite temperature
transition line crosses the Kc line at finite ! %14&. We note
that, for understanding the whole phase structure which in-
cludes the region above the Kc line #negative values of the
bare quark mass$, the existence of the Aoki phase is impor-
tant %20&. A schematic diagram of the phase structure for this
case is shown in Fig. 4#b$. For simplicity, we omit the phase

structure above the Kc line. It is known that the system is not
singular on the Kc line in the high-temperature phase #to the
right of the finite temperature transition line$ %14&. The loca-
tion of the finite temperature transition line moves toward
larger ! as Nt is increased. In the limit Nt!" , the finite
temperature transition line will shift to !!" so that only the
confined phase is realized at T!0.

B. When NF is very large

We present the result for the case of NF!240 in Fig. 5.
The reason why we investigate the case where the number of
flavor is so large as 240 is the following: We have first in-
vestigated the case of NF!18 as a generic case for NN
'17. However it has turned out that the phase diagram looks
complicated when NF!18. So, to understand the phase
structure for NF'17, we have increased the number of fla-
vors like 18, 60, 120, 180, 240, and 300, and systematically
viewed the results of the quark mass and the pion mass for
all these numbers of flavors. Then we have found that when
the number of flavors is very large as 240, the phase diagram
is simple as the chirally symmetric case discussed in Sec. III.
Therefore we first show the result for the case of NF!240.
At finite Nt where numerical simulations have been per-

formed, the finite temperature transition occurs as shown in
Fig. 5. As Nt increases, the transition line moves towards
larger value of ! . The envelop of those finite temperature
transition lines is the zero temperature phase transition line,

FIG. 3. #a$ mq at !!" . #b$ m( at !!" . Results with an anti-
periodic boundary condition #apbc$ in the t direction and those with
the periodic boundary condition #pbc$ are compared on Nt!8 and 4
lattices.

FIG. 4. The phase structure for NF)6; #a$ at zero temperature,
and #b$ at finite temperatures. The chiral limit #massless quark limit$
is shown by thick curves labeled by ‘‘mq!0,’’ and the finite tem-
perature QCD transition at a fixed finite Nt is shown by a shaded
curve.

IWASAKI et al. PHYSICAL REVIEW D 69, 014507 #2004$

014507-6

~ 0.25

 

NF < NFcrit
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Phase diagram of  Wilson fermion
for NF < NFcrit  Iwasaki et al. (91,04)

19

If the theory is confining, 
the transition line move to 
the right as T decreases (or 
V increases).

Eventually, the whole region
is covered by confining
phase.
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termediate values of K, and becomes stronger again towards
the chiral limit Kc . As K is increased, the finite temperature
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cludes the region above the Kc line #negative values of the
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case is shown in Fig. 4#b$. For simplicity, we omit the phase

structure above the Kc line. It is known that the system is not
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tion of the finite temperature transition line moves toward
larger ! as Nt is increased. In the limit Nt!" , the finite
temperature transition line will shift to !!" so that only the
confined phase is realized at T!0.

B. When NF is very large

We present the result for the case of NF!240 in Fig. 5.
The reason why we investigate the case where the number of
flavor is so large as 240 is the following: We have first in-
vestigated the case of NF!18 as a generic case for NN
'17. However it has turned out that the phase diagram looks
complicated when NF!18. So, to understand the phase
structure for NF'17, we have increased the number of fla-
vors like 18, 60, 120, 180, 240, and 300, and systematically
viewed the results of the quark mass and the pion mass for
all these numbers of flavors. Then we have found that when
the number of flavors is very large as 240, the phase diagram
is simple as the chirally symmetric case discussed in Sec. III.
Therefore we first show the result for the case of NF!240.
At finite Nt where numerical simulations have been per-

formed, the finite temperature transition occurs as shown in
Fig. 5. As Nt increases, the transition line moves towards
larger value of ! . The envelop of those finite temperature
transition lines is the zero temperature phase transition line,

FIG. 3. #a$ mq at !!" . #b$ m( at !!" . Results with an anti-
periodic boundary condition #apbc$ in the t direction and those with
the periodic boundary condition #pbc$ are compared on Nt!8 and 4
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FIG. 4. The phase structure for NF)6; #a$ at zero temperature,
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Phase diagram of  Wilson fermion
with NFcrit < NF < NFaf (speculation)

19

The one end of the 
transition line at mq=∞ 
moves to the right with V 
as before, while the other 
end  at mq=0 won’t. 

infinitely heavy quarks. Quarks are confined for any value of
the current quark mass for all values of ! at zero temperature
(Nt!").
On a lattice with a fixed finite Nt , we have the finite

temperature deconfining transition at finite ! , because the
temperature T!1/Nta becomes larger as ! increases in as-
ymptotically free theories. At K!0 (mq!"), the first order
finite temperature phase transition of pure SU#3$ gauge
theory locates at !c!5.69254(24) and 5.89405#51$ for Nt
!4 and 6 %18& and at !c!6.0625 for Nt!8 %19&. This finite
temperature transition turns into a crossover transition at in-
termediate values of K, and becomes stronger again towards
the chiral limit Kc . As K is increased, the finite temperature
transition line crosses the Kc line at finite ! %14&. We note
that, for understanding the whole phase structure which in-
cludes the region above the Kc line #negative values of the
bare quark mass$, the existence of the Aoki phase is impor-
tant %20&. A schematic diagram of the phase structure for this
case is shown in Fig. 4#b$. For simplicity, we omit the phase

structure above the Kc line. It is known that the system is not
singular on the Kc line in the high-temperature phase #to the
right of the finite temperature transition line$ %14&. The loca-
tion of the finite temperature transition line moves toward
larger ! as Nt is increased. In the limit Nt!" , the finite
temperature transition line will shift to !!" so that only the
confined phase is realized at T!0.

B. When NF is very large

We present the result for the case of NF!240 in Fig. 5.
The reason why we investigate the case where the number of
flavor is so large as 240 is the following: We have first in-
vestigated the case of NF!18 as a generic case for NN
'17. However it has turned out that the phase diagram looks
complicated when NF!18. So, to understand the phase
structure for NF'17, we have increased the number of fla-
vors like 18, 60, 120, 180, 240, and 300, and systematically
viewed the results of the quark mass and the pion mass for
all these numbers of flavors. Then we have found that when
the number of flavors is very large as 240, the phase diagram
is simple as the chirally symmetric case discussed in Sec. III.
Therefore we first show the result for the case of NF!240.
At finite Nt where numerical simulations have been per-

formed, the finite temperature transition occurs as shown in
Fig. 5. As Nt increases, the transition line moves towards
larger value of ! . The envelop of those finite temperature
transition lines is the zero temperature phase transition line,

FIG. 3. #a$ mq at !!" . #b$ m( at !!" . Results with an anti-
periodic boundary condition #apbc$ in the t direction and those with
the periodic boundary condition #pbc$ are compared on Nt!8 and 4
lattices.

FIG. 4. The phase structure for NF)6; #a$ at zero temperature,
and #b$ at finite temperatures. The chiral limit #massless quark limit$
is shown by thick curves labeled by ‘‘mq!0,’’ and the finite tem-
perature QCD transition at a fixed finite Nt is shown by a shaded
curve.
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~ 0.25 NF > NFcrit
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Phase diagram of  Wilson fermion
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On a lattice with a fixed finite Nt , we have the finite

temperature deconfining transition at finite ! , because the
temperature T!1/Nta becomes larger as ! increases in as-
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theory locates at !c!5.69254(24) and 5.89405#51$ for Nt
!4 and 6 %18& and at !c!6.0625 for Nt!8 %19&. This finite
temperature transition turns into a crossover transition at in-
termediate values of K, and becomes stronger again towards
the chiral limit Kc . As K is increased, the finite temperature
transition line crosses the Kc line at finite ! %14&. We note
that, for understanding the whole phase structure which in-
cludes the region above the Kc line #negative values of the
bare quark mass$, the existence of the Aoki phase is impor-
tant %20&. A schematic diagram of the phase structure for this
case is shown in Fig. 4#b$. For simplicity, we omit the phase

structure above the Kc line. It is known that the system is not
singular on the Kc line in the high-temperature phase #to the
right of the finite temperature transition line$ %14&. The loca-
tion of the finite temperature transition line moves toward
larger ! as Nt is increased. In the limit Nt!" , the finite
temperature transition line will shift to !!" so that only the
confined phase is realized at T!0.

B. When NF is very large

We present the result for the case of NF!240 in Fig. 5.
The reason why we investigate the case where the number of
flavor is so large as 240 is the following: We have first in-
vestigated the case of NF!18 as a generic case for NN
'17. However it has turned out that the phase diagram looks
complicated when NF!18. So, to understand the phase
structure for NF'17, we have increased the number of fla-
vors like 18, 60, 120, 180, 240, and 300, and systematically
viewed the results of the quark mass and the pion mass for
all these numbers of flavors. Then we have found that when
the number of flavors is very large as 240, the phase diagram
is simple as the chirally symmetric case discussed in Sec. III.
Therefore we first show the result for the case of NF!240.
At finite Nt where numerical simulations have been per-

formed, the finite temperature transition occurs as shown in
Fig. 5. As Nt increases, the transition line moves towards
larger value of ! . The envelop of those finite temperature
transition lines is the zero temperature phase transition line,

FIG. 3. #a$ mq at !!" . #b$ m( at !!" . Results with an anti-
periodic boundary condition #apbc$ in the t direction and those with
the periodic boundary condition #pbc$ are compared on Nt!8 and 4
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and #b$ at finite temperatures. The chiral limit #massless quark limit$
is shown by thick curves labeled by ‘‘mq!0,’’ and the finite tem-
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In the large V limit, the relevant
region is covered by “confined”
phase except for the chiral limit.
In “confined”, ΛTC depends on
mq and vanishes in the chiral limit.

“confined”

               

???
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all these numbers of flavors. Then we have found that when
the number of flavors is very large as 240, the phase diagram
is simple as the chirally symmetric case discussed in Sec. III.
Therefore we first show the result for the case of NF!240.
At finite Nt where numerical simulations have been per-

formed, the finite temperature transition occurs as shown in
Fig. 5. As Nt increases, the transition line moves towards
larger value of ! . The envelop of those finite temperature
transition lines is the zero temperature phase transition line,

FIG. 3. #a$ mq at !!" . #b$ m( at !!" . Results with an anti-
periodic boundary condition #apbc$ in the t direction and those with
the periodic boundary condition #pbc$ are compared on Nt!8 and 4
lattices.

FIG. 4. The phase structure for NF)6; #a$ at zero temperature,
and #b$ at finite temperatures. The chiral limit #massless quark limit$
is shown by thick curves labeled by ‘‘mq!0,’’ and the finite tem-
perature QCD transition at a fixed finite Nt is shown by a shaded
curve.

IWASAKI et al. PHYSICAL REVIEW D 69, 014507 #2004$

014507-6

~ 0.25

“confined”

NF > NFcrit

???

            



General Strategy

12

✓Find the critical endpoint around mq=0.
✓Keep monitoring it while changing V to see whether it 

moves to the right with NT or V.

✓ If the endpoint moves to the right as in QCD, the theory 
is outside of Conformal Window.



This work (NF=10)
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This work using Wilson 
Fermion on V=43x4.

1st oder weakens as 
going to small kappa.

mQ and β dependence of Polyakov loop@NF =10
Phase 0: global scan of K-β plane May 14, 2012

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 4.4  4.6  4.8  5  5.2  5.4  5.6

po
ly

_s
ub

t

beta

nf10 k0.150
nf10 k0.145
nf10 k0.140
nf10 k0.130
nf10 k0.120
nf10 k0.110

Figure 25:

5.4 Nf = 8

Nf V β κ b.c. traj. spect. Figure generated by

8 83 × 16 0.0 0.220 anti-periodic 3,580 yamada
8 83 × 16 0.0 0.230 anti-periodic 2,400 yamada
8 83 × 16 0.0 0.235 anti-periodic 320 yamada
8 83 × 16 6.0 0.150 anti-periodic 6,000 15, 16 yamada
8 83 × 16 6.0 0.155 anti-periodic 4,560 15, 16 yamada

Table 5: Parameters of configurations for spectroscopy.
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Previous Results (NF=10)
Fukugita, Ohta, Ukawa (88)

14

KS, V=83x4.

Observation:
Transitions are 1st order 
over the entire range of 
fermion mass at NF=10.
No end point.
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FIG. 2. The magnitude of the jump of the Polyakov line
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numbers of flavors Nf.
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On the other hand, for mva -0.1 flip-flop behaviors with
a period of x=100 were observed at p 5.50, 5.51, and
5.52. For these runs the average of ReQ over subinter-
vals of z =50 form two clearly separate clusters center-
ing around (ReQ) =0.09-0.10 and 0.04-0.05. Similar
flip-flop behaviors with a somewhat more irregular pat-
tern were seen for m~a =0.05 at P =5.47 and 5.48.
The stable behavior at m~a =0.2 shows that the tran-

sition there is a relatively strong first-order transition.
The appearance of flip-flops and the decrease of the
amount of jump h(ReQ) across the transition at mva
=0.1 indicate that the transition weakens towards mva
=0.1. The transition, however, is still first order at mqa
=0.05, as evidenced by the persistence of the flip-flop
behavior. The transition might be weakening from

FIG. 1. The average value (ReQ) for an 83&4 lattice as a
function of p for (a) 1VI 1, (b) Nf 2, and (c) Nf 10. The
open squares in (c) are the results of a detailed heating run be-
tween P-5.1 and 5.2.

mrna 0.1 to 0.05, but it is not clear from our data
whether it eventually disappears toward mv 0 reconcil-
ing with the original prediction of the o-model analysis, s
or remains first order. '
Our results show that the first-order phase transition

persists at least down to mrna 0.05 with possible indica-
tions of weakening with decreasing mv. This is rather
different from the Nf 2 case, where the transition be-
comes continuous for an intermediately light quark mass
before turning first order again for rnva~0. 1. For
Nf 1, the Z(3) breaking effect of dynamical quarks is
probably too weak to smooth out the first-order transi-
tion of the pure gauge system.
Nf 2.—For m a 0.2, 0.1, and 0.05, the results have

been reported previously. The transition shows first-
order nature for mva 0.05 and 0.1, and that for mrna=0.2 is of continuous transition. In the present analysis,
the simulation has been extended to mrna 0.4 and 1.0.
At mqa 0.4 the average value of Q shows a continuous
increase with P, while it exhibits an abrupt jump at
mrna 1.0 [see Fig. 1(b)]. The continuous increase at
mrna 0.4 is similar to that at mva 0.2, but it appears
to occur over a narrower interval. Thus the first-order
deconfining transition, which persists at rnva 1.0, is
smoothed out before mrna 0.4 and the dynamical quark
continues to make the transition smoother at least down
to rnva 0.2. From rnva =0.1 to 0.05, b,(ReQ) increases
as shown in Fig. 2, indicating that the transition becomes
stronger towards ms 0 by the effect of the chiral phase
transition.
Wf =10.—%e made thermal-cycle analyses with z
=20 at mrna 0.1, 0.2, 0.4, 0.6, and 1.0 taking averages
over the last r-10. As shown in Fig. 1(c), we have
detected a clear hysteresis at mrna 0.1 and 1.0 which in-
dicates first-order transitions at both the chiral and
heavy-quark regions. The lack of hysteresis at other
values of mv shows that here again the transition is
weakened at intermediate values of mv. The increase of
(Q) across the transition region, nonetheless, is very
sharp at those values of rnqa. This feature and the fact
that h(ReQ) continuously increases for smaller mv (see
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amount of jump h(ReQ) across the transition at mva
=0.1 indicate that the transition weakens towards mva
=0.1. The transition, however, is still first order at mqa
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mrna 0.1 to 0.05, but it is not clear from our data
whether it eventually disappears toward mv 0 reconcil-
ing with the original prediction of the o-model analysis, s
or remains first order. '
Our results show that the first-order phase transition

persists at least down to mrna 0.05 with possible indica-
tions of weakening with decreasing mv. This is rather
different from the Nf 2 case, where the transition be-
comes continuous for an intermediately light quark mass
before turning first order again for rnva~0. 1. For
Nf 1, the Z(3) breaking effect of dynamical quarks is
probably too weak to smooth out the first-order transi-
tion of the pure gauge system.
Nf 2.—For m a 0.2, 0.1, and 0.05, the results have

been reported previously. The transition shows first-
order nature for mva 0.05 and 0.1, and that for mrna=0.2 is of continuous transition. In the present analysis,
the simulation has been extended to mrna 0.4 and 1.0.
At mqa 0.4 the average value of Q shows a continuous
increase with P, while it exhibits an abrupt jump at
mrna 1.0 [see Fig. 1(b)]. The continuous increase at
mrna 0.4 is similar to that at mva 0.2, but it appears
to occur over a narrower interval. Thus the first-order
deconfining transition, which persists at rnva 1.0, is
smoothed out before mrna 0.4 and the dynamical quark
continues to make the transition smoother at least down
to rnva 0.2. From rnva =0.1 to 0.05, b,(ReQ) increases
as shown in Fig. 2, indicating that the transition becomes
stronger towards ms 0 by the effect of the chiral phase
transition.
Wf =10.—%e made thermal-cycle analyses with z
=20 at mrna 0.1, 0.2, 0.4, 0.6, and 1.0 taking averages
over the last r-10. As shown in Fig. 1(c), we have
detected a clear hysteresis at mrna 0.1 and 1.0 which in-
dicates first-order transitions at both the chiral and
heavy-quark regions. The lack of hysteresis at other
values of mv shows that here again the transition is
weakened at intermediate values of mv. The increase of
(Q) across the transition region, nonetheless, is very
sharp at those values of rnqa. This feature and the fact
that h(ReQ) continuously increases for smaller mv (see
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V=83x8, NF=6-10

15

1st order at large 
kappa weakens as 
going to small 
kappa.

Calc. on V=164 is 
on going.

Preliminary Results for NF=6, 7, 8, 10

Phase 0: global scan of K-β plane May 14, 2012
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(Far) Future plan

16

(strongly depends on what LHC@CERN observes.)

✓ In realistic TC model, only two of NF flavors must 
be exact massless while the other NF-2 flavors 
shouldn’t be so.

✓Go to 2 + (NF-2) QCD
✓Nice to discuss such a theory on the basis of 

Columbia plot



Columbia plot
Brown, Butler, Chen, Christ, Dong, Schaffer, Unger, and Vaccarino (90),
N.H. Christ, Z. Dong (92) and N.H. Christ(92)
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Recent lattice results seems to favor the left.
How does this plot for many flavor QCD look like?

Kanaya, Lattice 2010

P
o
S
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2
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0
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0
1
2

Finite Temperature QCD on the Lattice – Status 2010 Kazuyuki Kanaya

Figure 3: Order of the finite temperature transition in 2+1 flavor QCD as a function of the degenerate u

and d quark mass m

ud

and the s quark mass m

s

. (Left) The standard scenario with the second order chiral
transition for two-flavor QCD. (Right) An alternative scenario when the two-flavor chiral transition is first
order.

experimental investigations of QGP. Estimation of T

c

in 2+1 flavor QCD has been made based on
large-scale simulations using various improved staggered quarks. However, there has been a big
discrepancy in the values of T

c

among different groups for more than five years. This year, the main
part of the discrepancy has been removed.

The nature of the transition in the chiral limit of two-flavor QCD (the upper left edge of the
figure) has significant implications for the nature of the transition at the physical point too. The
left panel of Fig. 3 summarizes the standard scenario in which the chiral transition of two-flavor
QCD is second order in the universality class of the O(4) Heisenberg model [33]. In this case,
because the chiral transition of three-flavor QCD is of first order, we have a tricritical point on
the left edge of the figure (m

ud

= 0) where the order of the transition changes from the second
order to the first order. Depending on the location of the tricritical point relative to the physical
point, the universality class dominating the parameter dependence around the physical point will
be different. The right panel of Fig. 3 shows an alternative scenario in which the chiral transition of
two-flavor QCD is first order. In this case, we have no tricritical point and thus no regions for the
O(4) universality class. A distinction between the two scenarios is important for studies at finite
densities too. Although the majority view the standard scenario as more probable, the nature of the
two-flavor chiral transition was not fully fixed. This year, we had some advances.

In this section, I discuss these developments.

3.1 Transition temperature

In 2005, the MILC Collaboration obtained T

c

= 169(12)(4) MeV in the combined chiral and
continuum limit from a measurement of a chiral susceptibility in 2+1 flavor QCD with asqtad
quarks and the one-loop Symanzik glues on N

t

= 4–8 lattices [34], where the scale was set by r1

and the O(4) critical exponent was adopted in the chiral extrapolation. In 2006, the Wuppertal-
Budapest Collaboration has published their values based on a study of the 2+1 flavor QCD with a
stout-link improved staggered quarks coupled to the tree-level Symanzik glues [35]. Carrying out
a chiral extrapolation to the physical point and a continuum extrapolation using N

t

= 6–10 lattices,

6
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NFcrit > 4 is assumed.
Symmetric phase diagram
Probably running is not slow 
enough.
Less interesting.

NF =4 (< NFcrit)
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NFcrit > 5 is assumed.
1st order persists to mU,D = ∞ 
for small mTQ.
Slow running and large γm may 
be expected at some NF.
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NFcrit > 5 is assumed.
1st order persists to mU,D = ∞ 
for small mTQ.
Slow running and large γm may 
be expected at some NF.
Furthermore,
•1st order P.T. is attractive 
because of baryongenesis. 

 Appelquist, Schwetz and Selipsky, PRD52, 4741 
(1995).
Kikukawa, Kohda and Yasuda, PRD77 (2008) 
015014

Phenomenologically interesting!
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If this is the case, 
EW Baryongenesis within 
TC seems to difficult.Z(2)

???

O
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NF - 2< NFcrit < NF (Speculation)
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If this is the case, not 
interesting.
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Summary

22

✓Important to have several complementary 
approaches in the search for Conformal Window.

✓We employ Wilson fermion to study the properties 
of Many Flavor QCD.

✓Important to know Wilson Phase diagram when 
interpreting spectroscopy results.

✓Establishing Columbia plot for Many Flavor QCD 
clarifies phenomenologically interesting region.



Finite Volume effect

23

•Finite volume effect 
is significant.
•Masses are bounded 

from below.
•Minimum decreases 

as volume → large.

Parameter search for SU(2) spectroscopy March 16, 2012
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Figure 14: Comparison of mπ vs 2 × mpcac with 83 × 24, 163 × 32 and 243 × 48 lattices at β = 1.5 and 2.0.
Calculatios are done with plaquette gauge and six-flavors of wilson fermions.
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Del Debbio et al.(2010)

Expected behavior in Conformal Window

24

•Static limit = Quench
•In the massless limit, 

everything becomes massless.
•Dynamical scale (e.g. ΛQCD in 

QCD) also vanishes there in 
contrast to QCD.
•Therefore, mass dependence 

of gluonic quantities is the 
key.
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FIG. 1: Sketches of the spectrum of a mass-deformed IR-conformal theory (square root of the string tension, 0++ and 2++

glueballs, pseudoscalar and vector isovector mesons). In the left plot, the locking sets up at an intermediate value of the fermion
mass, where dynamical fermion effects account for the physics of the system, but the pseudoscalar is not much lighter than the
other particles in the spectrum. In the right plot, the locking sets up at a high value of the fermion mass, where the heavy quark
effective theory provides a good description of the relevant degrees of freedoms. This case is realized close to the Banks-Zacks
point, but is possible in principle also if a strongly coupled IR fixed point is present.

B. Scaling region and locking scale

Under the hyperscaling hypothesis, the function FX defined in Eq. (21) is expected to approach a nonzero value
AX in the chiral limit. We can define the scaling region for a given channel X as the range of x = M/Λ around x = 0,
where the function FX(x) deviates from its asymptotic behavior by a small relative amount ε:

∣

∣

∣

∣

FX(x) −AX

AX

∣

∣

∣

∣

< ε . (26)

In the scaling region, the mass MX obeys the power law (24) as a function of the running mass up to corrections
of order ε. The extension of the scaling region will depend on the size of the discarded subleading contributions to
formula (24) in the chosen channel.
Consider now the square root of the fundamental string tension Mσ =

√
σ (which is well defined for dynamical

fermions in the adjoint representation) and the lightest isovector meson (which is always the pseudoscalar one), with
mass MPS. A finite value x = x̄ exists, below which both these channels are in the scaling region. This means that
below the mass Mlock = x̄Λ, the corrections to the hyperscaling behavior of Mσ and MPS masses are relatively smaller
than ε. Also the ratio MPS/Mσ for every fermionic mass below Mlock will be very similar to its asymptotic value
APS/Aσ:

∣

∣

∣

∣

MPS

Mσ
−

APS

Aσ

∣

∣

∣

∣

< O(ε) . (27)

The dynamics is dramatically different below and above the mass Mlock. In the large-mass region, M # Λ, the
gluonic and mesonic masses are parametrically independent. All the gluonic masses are proportional to Λ, while all
the mesonic masses are equal to 2M :

MPS = 2M , (28)

Mσ = BσΛ . (29)

The ratio MPS/Mσ goes to infinity in the large-mass limit. For masses below Mlock the two masses MPS and Mσ

enter the scaling region, become both independent of Λ and proportional to M . The ratio MPS/Mσ is locked to its
asymptotic value APS/Aσ. We will refer to Mlock as the locking mass.



MH and σ

25

•MP ≈ MV and MS ≈ MAV 
are typical pattern in the 
presence of heavy quark 
symmetry.
•σ1/2 is smaller than MH 

in most region.
•At V=323 x 64, σ1/2 ≈ MH

•FVE is small for σ1/2.
•σ1/2 seems to remain 

finite in the chiral limit.
•Confinement?

Parameter search for SU(2) spectroscopy March 16, 2012
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Figure 15: Various meson masses and
√

σ as a function of 2mpcac with 243×48 lattices at β = 2.0. Calculatios
are done with plaquette gauge and six-flavors of wilson fermions. One data from the simulation with the
same parameters but on 323 × 64 are also shown.
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